If it's not what You are looking for type in the equation solver your own equation and let us solve it.
116y^2-348y+137=0
a = 116; b = -348; c = +137;
Δ = b2-4ac
Δ = -3482-4·116·137
Δ = 57536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{57536}=\sqrt{64*899}=\sqrt{64}*\sqrt{899}=8\sqrt{899}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-348)-8\sqrt{899}}{2*116}=\frac{348-8\sqrt{899}}{232} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-348)+8\sqrt{899}}{2*116}=\frac{348+8\sqrt{899}}{232} $
| 5f-2=22 | | 2(t3+3)=-4 | | 7x1=7÷ | | 10x=34,6 | | 5x+3(0.5X)=100 | | 4x-1=(4x+4)÷5 | | .2m+8=15 | | x(x-1)(3x+1)=0 | | 4x-1=4x+4÷5 | | 5x2-6x=7 | | 5(2b-2)-7=3(b+4)-1 | | 8c+13=-7 | | (X2-x)(3x2+x)=0 | | 4k-11=k+10 | | 0.004x=x0.04 | | 2a-7=34 | | 7-8v=-89 | | 10b-3=47 | | 3x–8=x+7 | | 4x4x4x4x4=4^x | | 2x–8=20 | | 2x+5=3×-3 | | y=6.5^2-8= | | x+11=5x25 | | 8(x+70)=-96 | | y=65y^2-8 | | 120x=5x+40 | | -x+1=3x-27 | | 78/u=6 | | -(1-8n)+3n=-8+7(1+5n) | | F(x)=-2x^2+3x+(3(8/4)) | | Y=6.5y^2-8 |